Search results for "ELECTRIC-FIELD RECONSTRUCTION"

showing 2 items of 2 documents

Characterization of self-phase modulated ultrashort optical pulses by spectral phase interferometry

2002

0740-3224; We present the procedure for measuring self-phase modulation of ultrashort laser pulses focused in gases by use of the spectral phase interferometry for direct electric-field reconstruction (SPIDER) technique. We tested the device, which employs a noncollinear type I frequency mixing scheme, by measuring the phase induced by group-velocity dispersion either in a piece of glass or in the compressor of the laser system. Both results were validated by comparison with the expected values. The phase that resulted from self-phase modulation in H2 gas or atmospheric air was then measured and compared with calculations based on a Gaussian beam assumption. A new estimate of the nonlinear …

PhysicsINTENSITYbusiness.industryPhase (waves)Statistical and Nonlinear Physics02 engineering and technologyELECTRIC-FIELD RECONSTRUCTION021001 nanoscience & nanotechnologyLaser01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 opticsInterferometryOpticsMode-lockinglaw0103 physical sciencesDispersion (optics)0210 nano-technologySelf-phase modulationbusinessRefractive indexBandwidth-limited pulseJournal of the Optical Society of America B
researchProduct

Pulse trains produced by phase-modulation of ultrashort optical pulses: tailoring and characterization

2009

1094-4087; In this paper, creation of pulse doublets and pulse trains by spectral phase modulation of ultrashort optical pulses is investigated. Pulse doublets with specific features are generated through step-like and triangular spectral phase modulation, whereas sequences of pulses with controllable delay and amplitude are produced via sinusoidal phase modulations. A temporal analysis of this type of tailored pulses is exposed and a complete characterization with the SPIDER technique (Spectral Phase Interferometry for Direct Electric-field Reconstruction) is presented. (C) 2004 Optical Society of America.

Femtosecond pulse shapingMaterials scienceFrequency-resolved optical gatingCOHERENT QUANTUM CONTROLFEEDBACKbusiness.industrySpectral phase interferometry for direct electric-field reconstructionFREQUENCY01 natural sciencesPulse shapingAtomic and Molecular Physics and Optics010309 opticsINTERFEROMETRYOpticsMultiphoton intrapulse interference phase scan0103 physical sciencesFEMTOSECOND PULSES010306 general physicsbusiness2-PHOTON TRANSITIONSUltrashort pulsePhase modulationBandwidth-limited pulse
researchProduct